
Journal of Computational Physics 193 (2003) 40–66

www.elsevier.com/locate/jcp
Level set and total variation regularization for elliptic
inverse problems with discontinuous coefficients

Tony F. Chan a, Xue-Cheng Tai b,*

a Department of Mathematics, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1555, USA
b Department of Mathematics, University of Bergen, Johannes Brunsgate 12, N-5007 Bergen, Norway

Received 22 April 2003; received in revised form 5 August 2003; accepted 5 August 2003
Abstract

We propose a level set approach for elliptic inverse problems with piecewise constant coefficients. The geometry of

the discontinuity of the coefficient is represented implicitly by level set functions. The inverse problem is solved using a

variational augmented Lagrangian formulation with total variation regularization of the coefficient. The corresponding

Euler–Lagrange equation gives the evolution equation for the level set functions and the constant values of the coef-

ficients. We use a multiple level set representation which allows the coefficient to have multiple constant regions.

Knowledge of the exact number of regions is not required, only an upper bound is needed. Numerical experiments show

that the method can recover coefficients with rather complicated geometries of discontinuities under moderate amount

of noise in the observation data. The method is also robust with respect to the initial guess for the geometry of the

coefficient discontinuities.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

Consider the partial differential equation:

�r � ðqðxÞruÞ ¼ f in X � R2;
u ¼ 0 on oX:

�
ð1Þ

We want to use observations of the solution u to recover the coefficient qðxÞ. Output-least-squares

combined with augmented Lagrangian method will be used. We shall specifically treat the case that qðxÞ has
discontinuities and is piecewise constant. This problem is a model problem for many real industrial ap-

plications, for example, reservoir simulations, see [15–18,28]; underground water investigations [8], medical
*Corresponding author. Fax: 47-55-58-96-72.

E-mail addresses: chan@math.ucla.edu (T.F. Chan), Tai@mi.uib.no (X.-C. Tai).

URLs: http://www.math.ucla.edu/~chan, http://www.mi.uib.no/~tai.

0021-9991/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.jcp.2003.08.003

mail to: chan@math.ucla.edu
http://www.math.ucla.edu/~chan, http://www.mi.uib.no/~tai


T.F. Chan, X.-C. Tai / Journal of Computational Physics 193 (2003) 40–66 41
imaging [11,13], and many other applications, see [12,22,32,33]. Even as a purely academic problem, this

seemingly simple problem is rather difficult to solve by numerical schemes. In the presence of noise in the

observation data, it has been shown theoretically, cf. [19,20,41–43], that the approximation error increases
as the mesh size decreases. Up to now, it seems that there are not many available algorithms that can solve

this inverse problem with relative large noise on a sufficient fine mesh.

The desire to recover accurately the geometry of the coefficient discontinuities have motivated a number

of approaches in the literature [2,5,6,9,10,24,27]. One approach is to use a regularization of the coefficient

which respects the jumps and the geometry of the discontinuities. For example, in our earlier work [5,6], the

total variation norm regularization technique is combined with the augmented Lagrangain technique of

[24,27] for this purpose. Other works along this line are [9,10], etc. An alternative approach is to model the

geometry of the discontinuities implicitly in the representation of the coefficient. Specifically, several ap-
proaches using level set ideas have been recently proposed for this purpose; see [3,4,14,23,25,29,36,39] for

some pioneering work in this direction. The level set method was proposed in Osher and Sethian [35] for

tracing interfaces between different phases of fluid flows. Later, it has been used to identify the location of

discontinuities for digital image functions [7,34,44]. Its application for finding locations of discontinuities

for functions for inverse problems and optimal shape design problems is just in its beginning stage. In

[36,39], the level set idea was used for some inverse problems associated with eigenvalue distributions. In

[30,31], an idea similar to one for the level set methods which uses the characteristic function to represent a

domain has been used to identify shapes and boundaries. In [25], level set ideas are used for elliptic inverse
problems similar to the ones we are considering in this paper. Our approach extends the model in [25] in

several directions and also incorporates the level set method in a different way.

We highlight the essential contributions of our paper in the following:

• We formulate the level set method in a variational setting, using a variational augmented Lagrangian

formulation. The corresponding Euler–Lagrange equation gives the evolution equations for the level

set functions and the constant values. One of the advantages of the variational approach is that we

can guarantee that the value of the minimization functional is always reducing. The algorithm is rather

stable and we could reconstruct rather complicated geometry. In [3,4,25], the shape derivative is used to
get the steepest direction with respect to the entire boundary. This derivative is defined on the curve and

it is extended to a small neighborhood around the curve. This is not needed in our approach.

• We do not require that the constant values of the coefficient are known a priori, as in [4,25]. These values

are recovered as part of our formulation.

• We regularize the recovered coefficient by the total variation norm, which indirectly controls both the

jumps in the coefficient and the length of the level sets. We note that in the standard level set method-

ology, only the length part is regularized, which is insufficient for our purpose because we need to control

the jumps as well, due to the ill-posedness of the underlying elliptic inverse problem. Another advantage
of controlling the TV-norm instead of just the length of the level sets is that triple junctions are allowed

to have arbitrary angles; see also a recent work by Vese and Osher [45] which also deals with this

problem.

• Through the use of a novel variational multiple level set function approach borrowed from image pro-

cessing [44], we can recover coefficients with multiple constant values associated with the discontinuous

regions. If the identified coefficient have n constant values, then we just need log2ðnÞ level set functions.
Moreover, the exact number of constant values need not be known a priori – an upper bound suffices. If

we use more level set functions than are actually needed, the redundant regions will disappear or merge
with the other regions during the iterative process.

Another related work to our results is [1]. In [1], piecewise constants are used to approximate the co-

efficient and they try to adaptively refine the mesh until some given criteria are meet. For our level set

approach, we use a fixed fine mesh, but we use the level set functions to find the best partition of the domain

into piecewise constant regions to give a best match for the measurement. We note that some preliminary
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experimental results with the level set method have been reported in our related work [37]. In that work,

only the length of the level sets were used in the regularization and a different approach was used to solve

the level sets functions and the constant values. However, as we pointed out earlier, the need to control the
jumps in the coefficient leads naturally to the consideration of using the TV-norm regularization, which we

do here. More generally, the variational level set approach we are proposing here is rather general and can

be used with any regularization norm. As will be demonstrated later, the use of level set representations of

piecewise constant functions can be easily incorporated into standard variational formulations for general

optimization problems with piecewise constant functions, in addition to the class of elliptic inverse prob-

lems considered in this paper. Some optimal shape design problems can be turned into minimization

problems with piecewise constant functions and the discontinuities of the functions represent the shapes, cf.

[23,36]. Thus, our formulations offers a way to use level set methods for these kind of optimal shape design
problems. Finally, even though the presentation of our approach is presented here only for the piecewise

constant coefficient case, the formulation can be easily generalized to recover piecewise smooth functions,

using the formulation presented in [44].

The paper is organized in the following way: In Section 2, the identification problem is formulated as

several minimization problems using the output-least-squares augmented Lagrangian approach as in our

previous work [5,6]. In Section 3, we give a brief introduction to level set methods and explain how to

represent piecewise constant functions by level sets functions. In Section 4, we present an algorithm that

combines the variational level set approach with Uzawa�s algorithm for the output-least-squares func-
tionals. In Section 5, we discuss some numerical implementation issues. In Appendix A, calculations about

the gradient of the minimization functionals which is needed for the variational level set approach are

given.
2. Augmented Lagrangian formulations for the inverse problem

Our approach to the inverse problem is based on an augmented Lagrangian formulation used in our
earlier work [5,6] – only the incorporation of the level representation is new. For this reason, we now give a

review of the methodology used there. In the next section, we shall combine them with the level set method

to solve the identification problems.

In order to recover the coefficient qðxÞ, three different kind of observations are used:

1. We have an observation ud 2 L2ðXÞ for the solution u.
2. We have observations ud 2 L2ðXÞ; ~uug 2 ðL2ðXÞÞ2 for the solution u and its gradient ru, respectively.
3. We have observations ud 2 L2ðXÞ; ~uuv 2 ðL2ðXÞÞ2 for the solution u and the velocity qru, respectively.

Let K be the set of admissible coefficients

K ¼ fqjq 2 L1ðXÞ \ TV ðXÞ; 0 < qðxÞ6 qðxÞ6 �qqðxÞ < 1g;

with qðxÞ and �qqðxÞ known a priori. For a given q and u, we shall define the equation error eðq; uÞ as the
solution of

ðre;rvÞ ¼ ðqðxÞru;rvÞ � ðf ; vÞ 8v 2 H 1
0 ðXÞ: ð2Þ

Thus eðq; uÞ ¼ 0 indicates that

ðqðxÞru;rvÞ � ðf ; vÞ ¼ 0 8v 2 H 1
0 ðXÞ;

which means that q and u satisfy (1) in the weak sense. Here and also later, the inner product ð�; �Þ is used to

denote the L2ðXÞ inner product. Finally, we use uðqÞ to denote the solution to eðq; uÞ ¼ 0 for a given q.
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Corresponding to each of the three kinds of observations, we solve the following minimization problems:

ðP1Þ min
eðq;uÞ¼0; q2K

1

2
ku� udk2L2ðXÞ þ bRðqÞ;
ðP2Þ min
eðq;uÞ¼0; q2K

1

2
ku� udk2L2ðXÞ þ

1

2
ckruðqÞ �~uugk2L2ðXÞ þ bRðqÞ;
ðP3Þ min
eðq;uÞ¼0; q2K

1

2
ku� udk2L2ðXÞ þ

1

2
ckqruðqÞ �~uuvk2L2ðXÞ þ bRðqÞ;

where RðqÞ is a regularization functional used to control the regularity of qðxÞ.
If the coefficient is continuous, RðqÞ ¼ kqk2H2ðXÞ or kqk

2
H1ðXÞ are commonly used as the regularization term,

see [24,26,27]. In [27], existence, uniqueness and convergence have been proved for such kinds of regu-
larization. However, if the coefficient has large jumps, the use of H 2 or H 1-regularization is not appropriate

due to the discontinuities of the coefficient. In this work, we shall take as regularization functional the

following:

RðqÞ ¼
Z
X
jrqj dx: ð3Þ

In the above, RðqÞ is in fact the total variation of q; see [21,46] for definitions. When q is not differentiable,

jrqj is understood as a measure. More precisely,Z
X
jrqj dx ¼ sup

Z
X
qdivv dx : v

�
¼ ðv1; v2Þ 2 C1

0 ðXÞ; v21ðxÞ þ v2ðxÞ6 1 for x 2 X

�
; ð4Þ

see [46, p. 221] for some more details.

The augmented Lagrangian method is used to enforce the equation constraint

eðq; uÞ ¼ 0:

Denote Gðq; uÞ the minimization functionals for (P1)–(P3). We define the augmented Lagrangian functional

for any r > 0 as

Lrðq; u; kÞ ¼ Gðq; uÞ þ r
2
kreðq; uÞk2L2ðXÞ þ ðrk;reðq; uÞÞL2ðXÞ:

In the above, we are trying to enforce the equation constraint �r � ðqruÞ ¼ f in the H�1-norm.

To find a saddle point for the augmented Lagrangian functional for the three different cases, the fol-

lowing general algorithm is used.

Algorithm 1. Choose u0 2 H 1
0 ðXÞ; k0 2 H 1

0 ðXÞ and r > 0.

• Find qkþ1 2 K such that

qkþ1 ¼ arg min
q2K

Lrðq; uk; kkÞ: ð5Þ

• Find ukþ1 2 H 1
0 ðXÞ such that

ukþ1 ¼ arg min
u2H1

0
ðXÞ

Lrðqkþ1; u; kkÞ: ð6Þ
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• Update the multiplier as

kkþ1 ¼ kk þ reðqkþ1; ukþ1Þ:

In the above, we have used the conventional notation argminF ðvÞ to denote the minimizer of min F ðvÞ. The
convergence analysis for this kind of Uzawa algorithms for the inverse problem we consider here can be

found in [10,27].

The observation data ud and ~uug often contain noise. Some denoising algorithms are proposed in [6].

Numerical evidence shows that these denoising techniques are rather important to get stable numerical

performances.
3. Variational problems involving level set represented functions

Here, we state some of the details of the level set idea, following Osher and Sethian [35], Osher and

Fedkiw [34] and Vese and Chan [44]. Let C be a closed curve in X. Associated with C, we define a / as a

signed distance function by:

/ðxÞ ¼ distanceðx;CÞ; x 2 interior of C;
�distanceðx;CÞ; x 2 exterior of C:

�

It is clear that C is the zero level set of the function /. In case that C is not closed, but divide the domain

into two parts, then the function can be defined to be positive on one side of the curve and negative on the

other side of the curve. The function / is called a level set function for C. It is clear that / satisfies the

partial differential equation

jr/j ¼ 1 in X: ð7Þ

However, / is not the only function that satisfies Eq. (7) in the distribution sense. With the help of in-

troducing viscosity solution, it is known that the distance function is the unique viscosity solution for (7). In

our simulation, we have used another way to compute the distance functions, see [34,38]. Let ~// be a

function such that C is the zero level set curve of ~// and ~// is positive inside C and negative outside C. Then
the distance function / is the steady state of the following time-dependent Hamilton–Jacobi equation (cf.

[34,38]):

od
ot

þ sign ðdÞðjrdj � 1Þ ¼ 0; dðx; 0Þ ¼ d0 ¼ ~//; ð8Þ

i.e., dðx; t; ~//Þ ! /ðxÞ as t ! 1. Moreover the steady state is unique. Later, we shall see that we only need

the value of d in a band of width � around C. Correspondingly, we only need to solve Eq. (8) for t6Oð�Þ. In
our simulations, we have used the finite difference scheme of Peng et al. [38, p. 427], see formula (38) of [38].

Once the level set function is defined, we can use it to represent general piecewise constant functions as

follows. For example, assuming that qðxÞ equals q1 inside C and equals q2 outside C, it is easy to see that q
can be represented as

q ¼ q1Hð/Þ þ q2ð1� Hð/ÞÞ; ð9Þ

where the Heaviside function Hð/Þ is defined by

Hð/Þ ¼ 1; / > 0;
0; /6 0:

�
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In order to identify the coefficient q, we just need to identify the level set function / and the piecewise

constant values qi�s.
If the function qðxÞ has many pieces, then we need to use multiple level set functions. We shall follow the

ideas of Vese and Chan [44]. Assume that we have two closed curves C1 and C2, and we associate the two

level set functions /j; j ¼ 1; 2 with these curves. Then the domain X is divided into four parts

X1 ¼ x 2 X; /1f > 0; /2 > 0g;
X2 ¼ x 2 X; /1f > 0; /2 < 0g;
X3 ¼ x 2 X; /1f < 0; /2 > 0g;
X4 ¼ x 2 X; /1f < 0; /2 < 0g:

ð10Þ

Using the Heaviside function again, we can express q with possibly up to four pieces of constant values as

q ¼ q1Hð/1ÞHð/2Þ þ q2Hð/1Þð1� Hð/2ÞÞ þ q3ð1� Hð/1ÞÞHð/2Þ þ q4ð1� Hð/1ÞÞð1� Hð/2ÞÞ: ð11Þ

By generalizing, we see that n level set functions give the possibility of 2n regions. For i ¼ 1; 2; . . . ; 2n, let
binði� 1Þ ¼ ðbi1; bi2; . . . ; binÞ be the binary representation of i� 1, where bij ¼ 0 or 1. The representation of q
would look like

q ¼
X2n
i¼1

qi
Yn
j¼1

Rið/jÞ; ð12Þ

where

Rið/jÞ ¼
Hð/jÞ if bij ¼ 0;
1� Hð/jÞ if bij ¼ 1:

�

Even if we the true q needs less than 2n distinct regions, we can still use n level set functions since some

subdomains are allowed to be empty. In using such a representation, we only need to determine the
maximum number of level set functions we want to use before we start.

Gradient type methods will be used to find the minimizers with respect to qi and /i. To illustrate our

approach, let us consider a very general minimization problem

min
q2V

F ðqÞ; ð13Þ

where V is a space or set containing piecewise constant functions and possibly with some other extra

constraints. Such kinds of minimization problems arise from many inverse problems and some optimal

shape design problems.
For any given q 2 V , it can be represented as in (12). Using the chain rule, it is easy to see that the

following relations hold:

oF
oqi

¼
Z
X

oF
oq

oq
oqi

dx;
oF
o/i

¼ oF
oq

oq
o/i

: ð14Þ

For many problems, oF =oq is known and there are ready softwares to compute them. In order to use the

level set method, we just need to compute the derivatives oq=oqi and oq=o/i.

Let us first consider a simple case where we only have one level set function and the piecewise constant

function qðxÞ is represented as in (9). Then it is easy to see that
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oF
oq1

¼
Z
X

oF
oq

Hð/Þ dx; oF
oq2

¼
Z
X

oF
oq

ð1� Hð/ÞÞ dx;
oF
o/

¼ ðq1 � q2Þdð/Þ
oF
oq

: ð15Þ

In the above, d denotes the Dirac function, i.e., dð0Þ ¼ 1 and dðxÞ ¼ 0 8x 6¼ 0. If we define

X1 ¼ fxjx 2 X; / > 0g, X2 ¼ fxjx 2 X; /6 0g, then it is easy to see that:

oF
oq1

¼
Z
X1

oF
oq

dx;
oF
oq2

¼
Z
X2

oF
oq

dx:

Now we consider the more general case of n level set functions as given in (12). From (12), we see that

oq
oqi

¼
Yn
j¼1

Rið/jÞ;
oq
o/i

¼
X2n
i¼1

qi
Yn

j¼1;j 6¼i

Rið/jÞ
 !

Dð/iÞ; ð16Þ

where

Dð/iÞ ¼
dð/iÞ if bij ¼ 0;
�dð/iÞ if bij ¼ 1:

�

It can be seen that oq=oqi is non-zero only in the region corresponding to q ¼ qi. Inside this region,

oq=oqi ¼ 1:
To be precise mathematically, the delta function dð/Þ needs to be understood as the limit of some very

smooth functions in a proper norm. In the numerical implementations, we sometimes replace the Heaviside

function H by a C1 function H�. Correspondingly, we replace d by d� ¼ H 0
�. The smooth function H� is

chosen in a way such that the derivatives oF =oqi and oF =o/ involving H� and d� converges to the corre-

sponding derivatives of H and d. The convergence of oF =o/ should be understood in the sense of pointwise

convergence. In fact, it is better not to interpret H and d functions as distributions.
4. Uzawas algorithm for variational level set methods

The Uzawa algorithm outlined in Algorithm 1 can be easily modified to incorporate the level set rep-

resentation of the coefficient. Our approach is to replace the step corresponding to minimization with re-

spect to q by a first step of minimizing with respect to fqig2
n

i¼1 followed by a step of minimizing with respect

to f/jg
n
j¼1. The minimization steps are performed using a gradient based method with a line search. We

outline the algorithm below.

Algorithm 2. Choose initial values q0i ;/
0
j ; u

0 and k0. Set k ¼ 0.
• (Update qi�s). Let pk ¼ f�oLrðqki ;/

k
j ; u

k; kkÞ=oqig2
n

i¼1. Find ak such that

ak ¼ arg min
qki þapki 2½ai ;bi �;i¼1;...;2n

Lrðqki þ apki ;/
k
j ; u

k; kkÞ: ð17Þ

Set

fqkþ1
i g2

n

i¼1 ¼ fqki g
2n

i¼1 þ akpk: ð18Þ
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• (Update /j�s). For j ¼ 1; 2; . . . ; n, define wk
j ¼ �oLrðqkþ1

i ;/k
j ; u

k; kkÞ=o/j and find rk
j such that

rk
j ¼ arg min

rj2R
Lrðqkþ1

i ;/k
j þ rjw

k
j ; u

k; kkÞ: ð19Þ

Set

~//k
j ¼ /k

j þ rk
jw

k
j : ð20Þ

• (Reinitialization of /j�s). If ‘‘necessary’’, reinitialize the level set functions f ~//k
jg

n
j¼1, i.e., set d0 ¼ ~//k

j .

Choose an appropriate s0 and solve Eq. (8) to t ¼ s0. The reinitialized /kþ1
j is then taken as

/kþ1
j ¼ dðx; s0; ~//k

j Þ: ð21Þ

Otherwise set /kþ1
j ¼ ~//k

j .
• (Update u). Calculate vk ¼ �oLrðqkþ1

i ;/kþ1
j ; uk; kkÞ=ou. Find nk such that

nk ¼ arg min
n2R

Lrðqkþ1
i ;/kþ1

j ; uk þ nvk; kkÞ: ð22Þ

Set

ukþ1 ¼ uk þ nkvk: ð23Þ

• (Update k). After each fixed number of iterations, update the Lagrangian multiplier as

kkþ1 ¼ kk þ re qkþ1
i ;/kþ1

j ; ukþ1
� �

:

Otherwise do not update k, i.e., kkþ1 ¼ kk. In the above, e is the equation error corresponds to qkþ1
i ;/kþ1

j

and ukþ1.

• Go to the next iteration for k.
The reason we need the reinitialization step is because after the updating of /j in (20), the level set

function may not be a distance function any more. The reinitialization step can be regarded as a projection

step which projects a function to a distance function with the zero level set being kept. See Section 5.3 for
explanations about when it is ‘‘necessary’’ to reinitialize the level set functions.

For Algorithm 2, we need to calculate the derivatives of Lr with respect to fqig2
n

i¼1, f/jg
n
j¼1 and u, i.e., we

need to compute pk, wk
j and vk for each iteration. In addition to the calculations of the derivatives, we also

need to do three line searches as in (17), (19) and (22). See Section 5.2 about some cautions that shall be

taken for the line searches. In Appendix A, we shall give the details about the calculation of oLr=oq. To get

pk and wk
j at each iteration, we need to calculate oLr=oqi and oLr=o/j and this can be easily done using (14).

The computational cost for computing the gradient directions is rather cheap, see Section 6 and Appendix

A for some more explanations.
The above algorithm is an extension of the algorithm of [27] to the level set method, see Algorithm 3 of

[27, p. 99]. The algorithm of [27] needs to minimize q first and then minimize with u followed by an updating

of k. A linear convergence rate was proved for the proposed algorithms in [27]. In this work, the coefficient

q is represented by level set functions. Correspondingly, we replace the minimization of q by an updating of

the constant values qkþ1
i using a gradient method as in (17) and (18) and an updating the level set functions

/kþ1
j also by a gradient method as in (19) and (20). We expect that this algorithm also has a linear con-

vergence rate at least near the true minimizer.
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5. Implementation issues

We discuss here several numerical issues that arise in the implementation of Algorithm 2.
5.1. Smooth approximations to H and d functions

In numerical implementations, it is desirable to replace the Heaviside function H and the delta function d
by some smoothed counterparts. In our simulations, the following smoothed functions for the Heaviside-

function H and delta-function d have been used (cf. [44]):

H�ð/Þ ¼
1

p
tan�1 /

�
þ 1

2
; ð24Þ

d�ð/Þ ¼
�

p /2 þ �2
� � : ð25Þ

In order to have good accuracy, we need to choose � sufficiently small. For small �, d� is a smooth function,
but with very sharp singular layers. This makes it difficult to represent the d� function by finite element

functions which is needed for oLr=o/j and perform the numerical integrations needed to get the derivatives

oLr=oqi. From our numerical experience, it was found that it is not good to use too small � for H� and d�.
If there is no observation error or there is very little observation error, we shall be able to recover a

rather accurate coefficient. For such cases, we replace the d function by d�, but do not replace H by H�, as

doing so will introduce an unnecessary error in the determination of the location of the discontinuities. If

the observation error is large, we replace both H and d by H� and d�. In all the simulations, the value of � is
always taken to be � ¼ h and h is the mesh size used for the spacial x and y variables.
5.2. Precautions about the line searches

The equation error function e depends on /j; qi and u. For fixed /j and u, e is linear with respect to qi.
For fixed /j and qi, e is linear with respect to u. The regularization functional RðqÞ defined in (3) is non-

linear with respect to /j, but linear with respect to qi. Thus the Lagrangian functional Lr is quadratic with

respect to qi if the other variables are fixed and also quadratic with respect to u for fixed other variables.

Correspondingly, we see that the minimization functions for linear searches (17) and (22) are quadratic
functions. We can therefore derive explicit formulas for getting the minimizers ak and nk. However, cautions

must be taken for the line-search (19).

In Fig. 1, we plot the line-search functions

gðrÞ ¼ Lrðqkþ1
i ;/k

j þ rwk
j ; u

k; kkÞ

for some given k and j and these plots show some of the typical situations during the iterations. In Fig. 1(c),

the Heaviside function H is replaced by H�. In Figs. 1(a) and (b), H is not replaced. If we do not replace H
by H�, gðrÞ is a stair-case function. With H�, gðrÞ is a ‘‘smooth’’ function. In Figs. 1(a) and (c), r ¼ 0 is the

minimizer for the line search. In Fig. 1(b), r ¼ 0 is a local minimizer, but there is another global line-search

minimizer at r ¼ 0:012. Very often, the line search can miss the global minimizer in situations like in

Fig. 1(b).

We see from the above discussion that it happens very often in our simulations that the line-search (19)

returns a value rk
j ¼ 0, i.e., we are not able to decrease the function value, indicating that we are at a local

minimizer with the /j functions. If this happens, we always take



Fig. 1. The plot for the line-search functions for (19) with H or H�.
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rk
j ¼ rfixed: ð26Þ

This corresponds to a standard gradient descent step with step size rfixed. The fixed step size rfixed should be

chosen properly in order to avoid stability problems. The step sizes obtained by the line searches could give

us a hint about what range the fixed step sizes should be. Another good strategy is to use the line searches in

the beginning stage of the iterations and then switch to gradient descent with fixed step sizes for all sub-

sequent steps. We did not use this strategy in our numerical experiments.

Methods of the type of Golden-section are often used for line searches. This kind of methods often can

only find local minimizers. If the line-search function is a stair-case function, then every point is a local
minimizer. If we use Golden-section type method, some extra checking needs to be added to avoid the case

that the line search is trapped in an interval where the line-search function is constant. In our simulations,

we check that the values at the Golden-section points are not constant for a fixed number of updating. If so,

we just enlarge the search interval by a given factor.
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5.3. When to reinitialize the level set functions

The cost to reinitialize a level set function to a distance function is rather cheap and we could do the
reinitialization at each time step. However, there are two disadvantages if we reinitialize too often. First, the

scheme [38, p. 427] is a first order explicit scheme. It is known that the first order scheme is adding a certain

amount of diffusion to the obtained solution. If we reinitialize too often, the added diffusion is too much

and we may not be able to recover geometries with sharp corners. Second, our inverse problem is ill-posed.

Even when the computed /j is still far from the true function, the gradient wk
j can be already very small.

Very often, the correction value rk
jw

k
j is so small that it takes many iterations to change the sign of a nodal

value. If we reinitialize too often, it is possible that none of the nodal values has changed sign and we are

not able to move the level set functions.
In our simulations, we reinitialize a level set function when the level set function undergoes a sufficient

amount of change. The criteria we have used is that the L2-norm of a level set function has changed more

than a given percentage. Another good strategy is to update the level set functions when sufficient many

nodal values of the level set functions have changed sign. However, if the level set function is not reini-

tialized for an intensive long period, for example, a fixed number of iterations, we reinitialize it any way.
6. Numerical experiments

We test Algorithm 2 on several two-dimensional problems. Let X ¼ ð0; 1Þ � ð0; 1Þ; f ¼
20p2 sinðpxÞ sinðpyÞ. Let u� be the exact finite element solution for the exact q and r be the noise level. We

get ~uud by ~uud ¼ u� þ rku�kL2=kRdkL2Rd . Here Rd is a finite element function with nodal values being uniform

random numbers between ½�1; 1� with zero mean. We then apply the denoising technique of Chan and Tai

[6] to smooth ~uud and the smoothed function from ~uud is used as the observation data ud for our identification
problem. In using the techniques of [6], we are not eliminating the noise. Instead, the noise is diffused and

the obtained ud satisfies the following equalities:

kud � ~uudkL2ðXÞ ¼ ku� � ~uudkL2ðXÞ ¼ rku�kL2ðXÞ:

The domain X is first divided into a rectangular mesh with uniform mesh size h for both the x and the y
variables, i.e., Dx ¼ Dy ¼ h. The coefficient q and the level set functions are approximated by piecewise
constants over this rectangular mesh and we denote Ph the piecewise constant functions space over this

mesh. Thus, the derivatives oF =oq, oq=o/i, oq=oqi are piecewise constants over the rectangular mesh. Finite

difference method is used to reinitialize the level set functions as in [38]. The nodal value dk
ij, see formula (38)

of [38, p. 427], is in fact the piecewise constant value of dk over the ði; jÞ rectangular element.

The functions e; u and k are approximated by finite difference or finite element methods. In order to re-

use some softwares that we already have, finite element approximations are used for e; u and k. The finite

element mesh is produced from the rectangular mesh by dividing each square into two triangular elements

using the diagonal of positive slope. Piecewise continuous linear functions are used for the finite element
space and we denote this piecewise linear finite element space by Sh.

As line search is used in our simulations, the numerical integration used for Lrðq; u; kÞ must be consistent

with the discretized approximations we use to get oLrðq; u; kÞ=oq and oLrðq; u; kÞ=ou. To explain the details,

let us use Aq to denote the matrix Aq corresponding to the following standard discrete elliptic operator

ðAqu; vÞ ¼ ðqru;rvÞ 8u; v 2 Sh � H 1
0 ðXÞ: ð27Þ

Assume that fwig are the basis functions for Sh and f/i} are the basis functions for Ph. For a given q, thematrix
Aq ¼ aij

� �
n1�n1

has the entries aij ¼
R
X qrwi � rwj. We also use Bu to denote the matrix corresponding to
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ðBuq; vÞ ¼ ðru � rv; qÞ 8q 2 Ph; 8v 2 Sh: ð28Þ

For a given u, the matrix Bu ¼ bij
� �

n1�n2
has the entries bij ¼

R
X /iru � rwj: It is easy to see that Bu is

generally neither square nor symmetric. Let C ¼ ðAqÞjq¼1. For any given function v, we use v to denote the

vector containing the nodal values of v. From (2), it is easy to see that the nodal values e of e with a given q
and u can be obtained by

e ¼ C�1ðAqu� fÞ ¼ C�1ðBuq� fÞ: ð29Þ

As q is piecewise constant and u; k are piecewise linear, all the integrations needed to get Aq and Bu can be

done exactly. Similarly, all the integrations needed to get Lrðq; u; kÞ can be done exactly. When we calculate

oLrðq; u; kÞ=oq and oLrðq; u; kÞ=ou, we need to use the matrices corresponding to these exact integrations. In

our calculations, the matrices are never assembled. Instead, we just have some subroutines to calculate the

product of the matrices on some given vectors. In practical implementations, we need to invert the matrix C
to get C�1. The matrix C�1 can be replaced by domain decomposition or multigrid preconditioners for the

Laplacian operator as in [40].
In all the examples, the mesh size is h ¼ 1=64. The time step for solving [38, p. 427] is taken as s ¼ 0:01h.

We choose s0 ¼ h when the level set functions are reinitialized as in (21). The level set functions are re-

initialized when the L2-norm has changed more than 10% or it has not been updated for 200 iterations (for

some of the tests, we use 500 iterations).

If the observation contains no noise, then we know that u ¼ ud is the minimizer and therefore we can

keep the Lagrangian multiplier k to be zero all the time and we also do not need to update u. The delta

function d is replaced by d� with � ¼ h, but the Heaviside function H is not replaced by H�. In case that the

observation contains noise, we replace both H and d by H� and d�; � ¼ h.
In theory, the Augmented Lagrangian method should converge for any r > 0. In practice, the value of r

must be properly chosen in order to have a good convergence. Even with a properly chosen r, the con-

vergence is normally faster in the beginning and then slows down. One typical thing is that it is very difficult

to force the equation error function e to the machine accuracy.

If the Lagrangian multiplier k is updated too often, the algorithm is not stable. In our simulations, we

choose to update it after a fixed number of iterations. How often do we need to update depends on the

problem. For example 1, we update after each 20 or 50 iterations. For the other examples, we update after

200 or 500 iterations. If we cannot find a proper interval to update, we simply keep k to be zero all the time.
This reduces the Augmented Lagrangain method to the penalization method.

In some of the figures, the dotted lines in the background show the true zero level curves and the dashed

lines are the computed zero level curves. We omit the numerical experiments we have done for problems

(P2) and (P3). When the noise level is very low, Algorithm 2 could produce rather accurate solutions for all

the three formulations (P1)–(P3). We can get a rather accurate solution for formulation (P2) with noise level

as high as 50 times the noise level that we can handle with formulations (P1) and (P3).
6.1. Example 1

We first test a simple problem. The exact coefficient qðxÞ is given in Fig. 2, i.e., qðxÞ ¼ 1 inside a circle and

qðxÞ ¼ 4 outside the circle. We add 5% noise, i.e., r ¼ 5%. The zero level set for the computed solution at

different iterations are shown in Fig. 3. Notice that we start with an initial guess for q with the location of

the discontinuities being a small circle and the constant values specified to be the lower bounds ai�s. We see

that, even with such a poor initial guess for q, Algorithm 2 is able to recover both the constant values and

the location of the discontinuities quite well. In fact, after only about 100 steps, the recovered coefficient is

already quite accurate.



Fig. 2. The exact qðxÞ and the location of the discontinuity.
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Next, we show results corresponding to different noise levels. In Fig. 4, we show the identified q and the

corresponding zero level set curve for different amount of noise. For this example, we see that the coefficient
can be recovered reasonably well even in the presence of up to 20% noise.

We also studied the effect of the regularization parameter b. In Fig. 5, we show the results for a range of

b values with r ¼ 5% noise. As expected, with larger b value, the identified qðxÞ and zero level set curve

become smoother. The recovered constant values remain good. This is true for all the examples presented in

this section. We can clearly see that b ¼ 10�9 is too small and the identified zero level set curve is oscillatory.

Comparing the results in Fig. 5, it seems that b ¼ 10�5 is a good choice.

In Fig. 6, we consider a case where the true qðxÞ is a piecewise smooth, but not constant, function. In this

case, Algorithm 2 tries to approximate q by a piecewise constant function. The true coefficient we used is
given by qðxÞ ¼ cðxÞe8xð1�xÞyð1�yÞ with cðxÞ ¼ 4 outside the circle and cðxÞ ¼ 1 inside the circle. The noise level

is set at 5%. The recovered q is shown in Fig. 6(d). We see that the location of the discontinuities is re-

covered very accurately. Moreover, the recovered q is a pretty good piecewise constant approximation to

the true q. In Fig. 6(e), the error kq� qkkL2ðXÞ is plotted. The plots in Fig. 6(f) show the kekkL2ðXÞ and

krkkL2ðXÞ where ek is the equation error at iteration k and rk is the projection of the residual –r � ðqkrukÞ – f
into the finite element space. It is typical that the augmented Lagrangian method cannot reduce the

equation error to machine accuracy. The L2 error kq� qkkL2ðXÞ is reduced from 2.5 to 0.6 and stays at 0.6.

The error cannot be reduced further.
Another observation we can make is that the computed solutions converge to the true solution faster in

the beginning. After this initial phase, the convergence slows down and it takes a lot of iterations to

move the computed solution to true solution. This is true for the computational results of Fig. 3 and also

for all the other examples. This is quite typical of augmented Lagrangian type methods. Also, due to the ill-

posedness of the inverse problem, the derivatives oLr=oq goes to zero much faster than the error of the

computed solutions. It can happen that when the computed solution is still far from the true solution, the

derivatives have already approached zero. It would be natural to use large step sizes when this happens.

However, the algorithm is unstable if the step sizes are increased. This is the reason for the slow conver-
gence near the solution.

For all the tests for this example, the lower and upper bounds used for the line-search (17) are taken as:

a1 ¼ 0:5; b1 ¼ 2; a2 ¼ 2; b2 ¼ 8:



(e) (f)

(c) (d)

(b)(a)

Fig. 3. The computed solution at different iterations and the computational error for Example 1 with r ¼ 5%, r ¼ 10�3, b ¼ 10�6.

Even with a rather poor initial guess, Algorithm 2 is able to recover both the constant values and the location of the discontinuities

quite well. In fact, after only about 100 steps, the recovered coefficient is already quite accurate.
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Fig. 4. The identified zero level set curve and the identified qðxÞ with noise level r ¼ 0%, 5%, 20%, 40%. For noise level less than 20%,

both the discontinuity location and the constant values are recovered accurately.
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Fig. 5.The identified zero level set
for

r
¼

5%. With larger

b , we get asmoother curve. The recovered constant

values remains good. For this problem, it seems thatb¼

10ffi 5is a good choice.
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6.2. Example 2

In this example, we try to identify a more complicated geometry for the location of discontinuities. The

exact coefficient qðxÞ is given in Fig. 7, i.e., qðxÞ ¼ 2 inside the two closed curves and qðxÞ ¼ 1 outside the

curves. Even though there appears to be three distinct piecewise constant regions, since 2 of the constant

values are identical, only one level set function is needed. The zero level set for the computed solution with

r ¼ 0 (i.e., noiseless) at different iterations are shown in Fig. 9. We start with an initial guess for q with the

location of discontinuities specified as a circle as shown, and with constant values given by the lower

bounds ai. We see that starting with one initial curve, Algorithm 2 is able to automatically split it into 2

pieces and capture the two separate regions successfully. This is the intrinsic advantage of the level set
approach. Moreover, the recovered constant values are quite accurate. The errors for the computed
curve with differentb



(a)

(c) (d)

(f)(e)

(b)

Fig. 6. Identifying a piecewise smooth function by a piecewise constant function. We have r ¼ 5%, r ¼ 10�3, b ¼ 10�5. The location of

the discontinuities is recovered rather accurately. Moreover, the recovered q is a pretty good piecewise constant approximation to the

true q. The L2 error kq� qkkL2ðXÞ is reduced from 2.5 to 0.6 and stays at 0.6. The error cannot be reduced further.
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Fig. 7. The exact zero level set curve and qðxÞ for Example 2.
quantities are shown in Fig. 8. The errors are reduced from 1 to 10�5 and then oscillates around 10�5. This

oscillatory behavior is caused by the approximation error from the line searches and the approximations we

have done in the numerical integrations and differentiations.

In Fig. 10, we show the results using a different initial curve. We see that the recovered coefficient is the

same as using the previous initial curve, even though the intermediate stages are quite different. This lends

confidence that Algorithm 2 is robust to the choice of the initial guess for q. The error jq� qij and

kq� qkkL2ðXÞ are reduced to 10�7 and then oscillates around it. We omit the plot for the errors.
In Fig. 11, we show the results for two different noise levels: 1% and 5%. We see that we can only tolerate

about 1% noise. With 5% of noise, the identified zero level set is rather poor. For the tests in Fig. 11, we

start with jq01 � q1j ¼ 0:4, jq02 � q2j ¼ 0:8 which gives a corresponding kq0 � qkL2ðXÞ ¼ 0:6. We use the same



Fig. 9. The identified zero level curve at different iterations with r ¼ 0, r ¼ 10�4, b ¼ 10�9. We see that starting with one initial curve,

Algorithm 2 is able to automatically split it into two pieces and capture the two separate regions successfully. The approximate shape

of the two objects is identified rather well after about 300 iterations.
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Fig. 10. The identified zero level curve at different iterations with another initial guess and with r ¼ 0, r ¼ 10�4, b ¼ 10�9. We see that

the recovered coefficient is the same as using the previous initial curve, even though the intermediate stages are quite different. The

approximate shape of the two objects is identified rather well after about 500 iterations.
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Fig. 11. The identified zero level curve for different noise levels for Example 2. It seems that we can only tolerate about 1% noise. For

the large noise (i.e., r ¼ 5%) case, the recovered zero level curve is not so good, but the constant values are recovered rather accurately.

Fig. 12. The

60 T.F. Chan, X.-C. T
initial level set curve as in Fig. 9. At convergence, we have jqk1 � q1j ¼ 0:01; jqk2 � q2j ¼ 0:1 and

kqk � qkL2ðXÞ ¼ 0:1 for r ¼ 1%. For r ¼ 5%, we have jqk1 � q1j ¼ 0:008, jqk2 � q2j ¼ 0:1 and
kqk � qkL2ðXÞ ¼ 0:2. It is interesting to note that even for the large noise (i.e., r ¼ 5%) case, the constant

values are recovered rather accurately, despite the fact that the recovered zero level curve is not so good.

Note that the error in L2-norm for the identified q for r ¼ 1% and r ¼ 5% is not so much different from

each other, but the identified zero level set curve is rather different.

For all the tests for this example, the lower and upper bounds used for the line-search (17) are taken as:

a1 ¼ 0:5; b1 ¼ 2; a2 ¼ 1; b2 ¼ 4:
exact zero level set curve and qðxÞ for Example 3.
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6.3. Example 3

In this last example, we use the same geometry as in the last example, but the coefficient qðxÞ takes two
different constant values inside the two curves. The exact coefficient qðxÞ is shown in Fig. 12, i.e., qðxÞ ¼ 1

outside the two curves, qðxÞ ¼ 2 inside one of the curves and qðxÞ ¼ 3 inside the another curve. Thus we

have three distinct constant regions for q and therefore we need two level set functions to represent qðxÞ.
The zero level set for the computed solution with r ¼ 0:1% at different iterations are shown in Fig. 13. In

this run, we start with an initial q with three distinct constant regions represented by the two circles and the

background. The results show that not only are the location of the discontinuities recovered accurately, but

also the constant values (the precise numerical values are not shown in the figure). After about 50 iterations,
Fig. 13. Identified zero level curve at different iterations with an initial guess that only gives three regions. After about 50 iterations, the

approximate shape of the geometry of the discontinuities is already rather good, but it take many more subsequent iterations to further

refine it. The topologies of the discontinuities (i.e., the number of distinct constant regions) of the initial guess for q and the exact

solution are the same and Algorithm 2 automatically determines that the region X1 is empty.
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the approximate shape of the geometry of the discontinuities is already rather good, but it take many more

subsequent iterations to further refine it. Note that in this example, the topologies of the discontinuities

(i.e., the number of distinct constant regions) of the initial guess for q and the exact solution are the same
and Algorithm 2 automatically determines that the region X1 is empty.

In Fig. 14, we show the results using an initial guess for q with a different topology than the true q – the

initial q has four distinct constant regions. At first glance, it may appear that the recovered coefficient has

four constant regions, which is one more than that for the true q. However, notice that a disconnected part

of the interior of one level set function (corresponding to the heart-shaped region) is completely embedded

in the interior of the other level set function. It turns out that the recovered constant value in this embedded

region is the same as the recovered constant value for the surrounding region and therefore the recovered q
is a good approximation to the true q. During the iteration, the shape of the embedded region continued to
Fig. 14. Identified zero level curve at different iterations with an initial guess that gives four regions. The extra region does not dis-

appear and the constant for this region is equal to the constant for the region surrounding it. This region stops to change as soon as the

two constants are nearly the same. The final identified q is the same as in Fig. 13. Both the discontinuity location and the constants are

accurately recovered.



Fig. 15. The identified zero level curve for different noise levels for Example 3. It seems that we cannot tolerate more than 1% of noise.
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evolve as long as these two constant values are not the same. However, it may also happen that the em-

bedded region can disappear before the two constant values become close enough, leaving only 3 regions.

To summarize, starting with 4 constant regions, we may end up with either 3 or 4 constant regions for the

recovered coefficient but in either case the accuracy is equally good. The fundamental reason for this
phenomenon is due to the non-uniqueness of the multi-level set representation of piecewise constant

functions with fewer constant regions than the maximum allowable.

In order to test how much noise we can tolerate, the computed zero level curves with noise r ¼ 1% and

r ¼ 5% are shown in Fig. 15. It seems that we cannot tolerate more than 1% of noise. For both tests, we

start with jq01 � q1j ¼ 0:4, jq02 � q2j ¼ 0:8, jq03 � q3j ¼ 1:2 with a corresponding kq0 � qkL2ðXÞ ¼ 0:8. The same

initial level set curve as in Fig. 13 is used. At convergence, we have jq01 � q1j ¼ 0:06, jq02 � q2j ¼ 0:1,
jq03 � q3j ¼ 0:1 and kqk � qkL2ðXÞ ¼ 0:1 for r ¼ 1%. For r ¼ 5%, we have jq01 � q1j ¼ 0:03, jq02 � q2j ¼ 0:12,
jq03 � q3j ¼ 0:06 and kqk � qkL2ðXÞ ¼ 0:4. We see that for large noise (i.e., r ¼ 5%), the recovered zero level
curve is not very good, but the constants are recovered rather accurately.

For all the tests for this example, the lower and upper bounds used for the line-search (17) are taken as:

a1 ¼ 0:5; b1 ¼ 2; a2 ¼ 1; b2 ¼ 4; a3 ¼ 1; b3 ¼ 6:
7. Conclusions

We have introduced a variational level set approach for elliptic inverse problems with piecewise constant
coefficients. The key ingredients are a multi-level set representation of the coefficient and a way to regularize

it in this representation using the total variation norm. A nice feature of our approach is that we do not

require knowledge of the exact number of constant regions, only an upper bound is needed. Results from a

range of numerical experiments show that the method can recover coefficients with rather complicated

geometries of discontinuities under moderate amount of noise in the observation data. The method is also

robust with respect to the initial guess for the geometry of the coefficient discontinuities, at least for low

noise levels.
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Appendix A. Calculations of the gradient of the minimization functionals

We recall from (14) that we have

oLr

oqi
¼
Z
X

oLr

oq
oq
oqi

dx;
oLr

o/i
¼ oLr

oq
oq
o/i

: ðA:1Þ

Thus, we need to calculate oLr=oq for the functional Lr defined for (P1)–(P3). First, let us note that the

derivative of the regularization functional RðqÞ can be given as in the following:

oR
oq

¼ �r � rq
jrqj

	 

: ðA:2Þ

In order to get (A.2), we need to assume that bjrqj�1
oq=on ¼ 0 on oX. This condition shall be satisfied by

the true minimizer.

Using some standard techniques, it is easy to show that the gradient functions for Lr for formulation (P1)

are given by

oLrðq; u; kÞ
oq

¼ �br � rq
jrqj

	 

þru � rðreþ kÞ; ðA:3Þ
oLrðq; u; kÞ
ou

¼ u� ud �r � ðqrðreþ kÞÞ: ðA:4Þ

For problem (P2) and (P3), we can get similar formulas for the gradient functions.
As explained in Section 6, piecewise constant functions Ph over a rectangular mesh are used to ap-

proximate q and the level set functions. Continuous piecewise linear functions Sh over a triangular mesh are

used to approximate functions e; u and k. From the definitions of the matrices Aq and Bu given in (27) and

(28), we can see that discretized values of the differentials oLrðq; u; kÞ=oq and oLrðq; u; kÞ=ou given in (A.3)

and (A.4) can be obtained by

oLrðq; u; kÞ=oq ¼ bR0ðqÞ þ B�
uðreþ kÞ; ðA:5Þ
oLrðq; u; kÞ=ou ¼ Mðu� udÞ þ Aqðreþ kÞ: ðA:6Þ

In the above, M is the standard mass matrix which would be the identity matrix if we use reduced inte-

grations only for the term ku� udk2L2 , B�
u is the transpose of Bu and q; e; k; u; ud are the vectors of nodal

values for the corresponding functions.
The q function is approximated by piecewise constants over the rectangular mesh. In implementations,

we approximate the regularization functional RðqÞ by

RðqÞ ¼
X
i

X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqi;j � qi�1;jj2 þ jqi;j � qi;j�1j2 þ �h2

q
: ðA:7Þ
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In the above, qi;j is the value of q over the ði; jÞ rectangular element. It is known that RðqÞ reduces to the TV-

norm of q if we take � ¼ 0. In order to get R0ðqÞ, we just need to calculate oRðqÞ=oqi;j for all i and j. Using

(A.7), it is easy to get the formula for calculating oRðqÞ=oqi;j, which is essentially a finite difference ap-

proximation for �r � ðrq=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrqj2 þ �

q
Þ. We always take � small (for example � ¼ 10�10) to avoid dividing

zero numbers.

For Algorithm 2, we need to calculate oLrðq; u; kÞ=oq twice and oLrðq; u; kÞ=ou once for each iteration.

For calculating these gradients, we just need to calculate e and do some matrix vector multiplications. In

order get e, we need to apply C�1 to the residual of the equation, see (29). We just need to calculate C�1

once for the whole computing process or we can replace C�1 by a spectral equivalent matrix which could be

a domain decomposition or multigrid preconditioner for the Laplace operator. When we do line searches in

Algorithm 2, we need to calculate the functional values for Lr which needs e. Thus, the cost for calculating

the functional value for Lr is at the same order as for calculating the gradients. Due to this reason it is not

recommended to do the line searches to a high accuracy. In our calculations, we limit the total number of

functional value evaluations for the line searches for (17) and (19).
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